Pynsee python package contains tools to easily search and download French data from INSEE and IGN APIs

Pypi Version Conda Forge Version Coverage Status Tests Status Documentation Status Python versions Code formatting License Latest Release Date PyPi Downloads


pynsee gives a quick access to more than 150 000 macroeconomic series, a dozen datasets of local data, numerous sources available on insee.fr as well as key metadata and SIRENE database containing data on all French companies. Have a look at the detailed API page portail-api.insee.fr.

This package is a contribution to reproducible research and public data transparency. It benefits from the developments made by teams working on APIs at INSEE and IGN.

Installation & API subscription

Credentials are necessary to access SIRENE API available through pynsee by the sirene module. API credentials can be created here: portail-api.insee.fr. All other modules are freely accessible.

# Download Pypi package
pip install pynsee[full]

# Get the development version from GitHub
# git clone https://github.com/InseeFrLab/pynsee.git
# cd pynsee
# pip install .[full]

# Subscribe to portail-api.insee.fr and get your credentials!
# Save your credentials with init_conn function :
from pynsee.utils.init_conn import init_conn
init_conn(sirene_key="my_sirene_key")

# Beware : any change to the keys should be tested after having cleared the cache
# Please do : from pynsee.utils import clear_all_cache; clear_all_cache()

Data Search and Collection Advice

There is also the list of all modules and functions in Modules and functions, and more information about Configuration and utilities.

For further advice, have a look at the documentation and gallery of the examples.

Example - Population Map

https://raw.githubusercontent.com/InseeFrLab/pynsee/master/docs/_static/popfrance.png
import math

import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from pynsee.geodata import get_geodata_list, get_geodata


# get geographical data list
geodata_list = get_geodata_list()
# get departments geographical limits
mapcom = get_geodata("ADMINEXPRESS-COG-CARTO.LATEST:commune").to_crs(epsg=3035)

# area calculations depend on crs which fits metropolitan france but not overseas departements
# figures should not be considered as official statistics
mapcom.attrs["area"] = mapcom.area / 10**6
mapcom = mapcom.to_crs(epsg=3857)

mapcom['REF_AREA'] = 'D' + mapcom['insee_dep']
mapcom['density'] = mapcom['population'] / mapcom.attrs["area"]

mapcom = mapcom.translate(departement=['971', '972', '974', '973', '976'],
                          factor=[1.5, 1.5, 1.5, 0.35, 1.5])

mapcom = mapcom.zoom(
    departement=["75","92", "93", "91", "77", "78", "95", "94"],
    factor=1.5, startAngle = math.pi * (1 - 3 * 1/9))

density_ranges = [
    40, 80, 100, 120, 150, 200, 250, 400, 600, 1000, 2000, 5000, 10000, 20000
]

rvals = np.full(len(mapcom), "< 40", dtype=object)

list_ranges = ["< 40"]

for rmin, rmax in zip(density_ranges, density_ranges[1:]):
    range_string = f"[{rmin}, {rmax}["
    list_ranges.append(range_string)

    rvals[(mapcom.density >= rmin) & (mapcom.density < rmax)] = range_string

rvals[mapcom.density.values > density_ranges[-1]] = "> 20 000"

list_ranges.append("> 20 000")

mapcom.loc[:, "range"] = pd.Categorical(rvals, ordered=True, categories=list_ranges)

fig, ax = plt.subplots(1, 1, figsize=(15, 15))
lgd = {'bbox_to_anchor': (1.1, 0.8), 'title': 'density per km2'}
mapcom.plot(column="range", cmap=cm.viridis, legend=True, ax=ax, legend_kwds=lgd)
ax.set_axis_off()
ax.set(title='Distribution of population in France')
plt.show()

fig.savefig('pop_france.svg',
            format='svg', dpi=1200,
            bbox_inches = 'tight',
            pad_inches = 0)

How to avoid proxy issues ?

# Use the proxy_server argument of the init_conn function to change the proxy server address
from pynsee.utils.init_conn import init_conn
init_conn(sirene_key="my_sirene_key",
          http_proxy="http://my_proxy_server:port",
          https_proxy="http://my_proxy_server:port")

# Beware : any change to the keys should be tested after having cleared the cache
# Please do : from pynsee.utils import *; clear_all_cache()

# Alternativety you can use directly environment variables as follows.
# Beware not to commit your credentials!
import os
os.environ['sirene_key'] = 'my_sirene_key'
os.environ['http_proxy'] = "http://my_proxy_server:port"
os.environ['https_proxy'] = "http://my_proxy_server:port"

Support

Feel free to open an issue with any question about this package using <https://github.com/InseeFrLab/pynsee/issues> Github repository.

Contributing

All contributions, whatever their forms, are welcome. See CONTRIBUTING.md